Abstract

The effects of temperature (8–10 or 20°C) on regulation of haemolymph osmotic and ionic concentrations were investigated over a range of salinities (0–25‰) in fifth-instar larvae of the Death Valley caddisfly Limnephilus assimilis. At low temperatures, levels of chloride and sodium in the haemolymph are regulated over a wide range of salinities corresponding to the salinities at which larvae occur in nature and at which they can complete development into adults. In contrast, haemolymph osmolality is constant at low salinities (<14‰) but approaches conformity with the medium at higher salinities. High temperature reduces the larva's ability to maintain low chloride concentrations in its haemolymph and also leads to a reduction in haemolymph osmotic pressure; thus, at high temperatures ions account for more of the haemolymph osmotic concentration than at low temperatures. These data suggest that the absence of larvae from thermal pools and from all Death Valley waters in summer can be explained by the effects of high water temperatures on hydromineral regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.