Abstract

We investigated effect of electrostatic interactions due to surfacecharges on structures and stability of cubic phases of monoolein (MO)membrane using the small-angle X-ray scattering method. Firstly, wechanged the surface charge density of the membrane by usingdioleoylphosphatidic acid (DOPA). As increasing DOPA concentration in themembrane at 30 wt % lipid concentration, a Q(224) to Q(229) phasetransition occurred at 0.6 mol % DOPA, and at and above 25 mol %, DOPA/MOmembranes were in the L(α) phase. NaCl in the bulk phase reduced theeffect of DOPA. These results indicate that as the electrostaticinteractions increase, the most stable phase changes as follows: Q(224)⇒ Q(229) ⇒ L(α). The increase in DOPAconcentration reduced the absolute value of spontaneous curvature of themembrane, | H(0) |. Secondly, we changed the surface charge of themembrane by adding a de novo designed peptide, which has netpositive charges and a binding site on the electrically neutral membraneinterface. The peptide-1 (WLFLLKKK) induced a Q(224) to Q(229)phase transition in the MO membrane at low peptide concentration. As NaClconcentration increases, the MO/peptide-1 membrane changed from Q(229)to Q(224) phase. The increase in peptide-1 concentration reduced |H(0) |. Based on these results, the stability of the cubic phases and themechanism of phase transition between cubic phase and L(α) phase arediscussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.