Abstract
Elucidation of the mechanisms of transitions between cubic phase and liquid‐crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide‐1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L‐lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.