Abstract

The continuum approximation is used to analyze the effect of electron emission from the surface of a spherical dust grain immersed in a plasma on the grain charge by assuming negligible ionization and recombination in the disturbed plasma region around the grain. A parameter is introduced that quantifies the emission intensity regardless of the emission mechanism (secondary, photoelectric, or thermionic emission). An analytical expression for the grain charge Z{sub d} is derived, and a criterion for change in the charge sign is obtained. The case of thermionic emission is examined in some detail. It is shown that the long-distance asymptotic behavior of the grain potential follows the Coulomb law with a negative effective charge Z{sub eff}, regardless of the sign of Z{sub d}. Thus, the potential changes sign and has a minimum if Z{sub d} > 0, which implies that attraction is possible between positively charged dust grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.