Abstract

We report the effect of the electron cyclotron (EC) beam width on the full suppression time of neoclassical tearing mode (NTM) using the finite difference method (FDM) based minimum seeking controller in ITER. An integrated numerical system is setup for time-dependent simulations of the NTM evolution in ITER by solving the modified Rutherford equation together with the plasma equilibrium, transport, and EC heating and current drive. The calculated magnetic island width and growth rate is converted to the Mirnov diagnostic signal as an input to the controller to mimic the real experiment. In addition, 10% of the noise is enforced to this diagnostic signal to evaluate the robustness of the controller. To test the dependency of the NTM stabilization time on the EC beam width, the EC beam width scan is performed for a perfectly aligned case first, then for cases with the feedback control using the minimum seeking controller. When the EC beam is perfectly aligned, the narrower the EC beam width, the smaller the NTM stabilization time is observed. As the beam width increases, the required EC power increases exponentially. On the other hand, when the minimum seeking controller is applied, NTM stabilization sometimes fails as the EC beam width decreases. This is consistently observed in the simulation with various representations of the noise as well as without the noise in the Mirnov signal. The higher relative misalignment, misalignment divided by the beam width, is found to be the reason for the failure with the narrower beam widths. The EC stabilization effect can be lower for the narrower beam widths than the broader ones even at the same misalignment due to the smaller ECCD at the island O-point. On the other hand, if the EC beam is too wide, the NTM stabilization time takes too long. Accordingly, the optimal EC beam width range is revealed to exist in the feedback stabilization of NTM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call