Abstract
AbstractPoly(butylene adipate‐co‐terephthalate) (PBAT), a biodegradable copolyester, was used as the polymer matrix to prepare nanocomposites with multiwalled carbon nanotubes (MWCNT) by melt‐mixing followed by hot‐pressing. The PBAT/MWCNT nanocomposites were exposed to electron beam (EB) irradiation, and thermal stability, melting and crystallization behavior of irradiated and unirradiated nanocomposites were comparatively investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. TGA results reveal increased thermal stability (up to 17°C) and maximum degradation temperature (Tmax) (up to 15°C) of PBAT/MWCNT nanocomposites, attributed to the high thermal stability of MWCNT and good MWCNT–PBAT interfacial interactions. However, the activation energy for thermal degradation (Ea) decreased with the presence of MWCNT in comparison to neat PBAT regardless of the MWCNT concentration. Both the thermal stability and Tmax of irradiated nanocomposites decreased by 3°C despite the crosslinking which can be attributed to successive minor irradiation‐induced polymer degradation, while Ea remained unchanged. Declined melting temperature (Tm), enthalpy of crystallization, enthalpy of melting and crystallinity of nanocomposites with the presence of MWCNT suggest the formation of less perfect crystals. Meanwhile, their increased glass transition temperature (Tg) and crystallization temperature (Tc) are due to the increased rigidity of PBAT chains and a reduced crystallization process in the presence of MWCNT, respectively. Similarly, reduced crystallinity and values of Tm and Tc of EB‐irradiated nanocomposites by 4.1%, 9.6%, and 7.5%, respectively, signifying the presence of PBAT‐crosslinks resulting in crystal defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.