Abstract

The electromagnetic middle-ear implant (MEI) is a new type of hearing device for addressing sensorineural and mixed hearing loss. The hearing compensation effect of the MEI varies depending on the transducer stimulation sites. This paper investigates the impact of transducer stimulation sites on MEI performance by analyzing stapes spatial motion. Firstly, we constructed a human-ear finite element model based on micro-CT scanning and inverse molding techniques. This model was validated by comparing its predictions of stapes spatial motion and cochlear response with experimental data. Then, stimulation force was applied at four common sites: umbo, incus body, incus long process and stapes to simulate the electromagnetic transducer. Results show that at low and middle frequencies, stapes-stimulating and incus-long-process-stimulating produce similar spatial motion to normal hearing; at high frequencies, incus-body-stimulating produces similar results to normal hearing. The equivalent sound pressure level generated by the stapes piston motion is less sensitive to the stimulation direction than that deduced by the stapes rocking motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.