Abstract

SummaryThe combined effects of electrical conductivity (an EC of 2.5 dS m–1 or 8 dS m–1 in the root zone) and fruit pruning (three or six fruit per truss) on tomato fruit quality were studied in a greenhouse experiment, planted in January 2005. Taste-related attributes [dry matter content (DM), total soluble solids content (SSC), titratable acidity (TA), glucose, fructose and citric acid content] and health-promoting attributes (lycopene, βcarotene, vitamin C, and total anti-oxidant activity) of tomato fruits harvested on the vine from the fifth or tenth truss positions were determined. The quality of tomato fruits was improved by high EC. A high EC in the root zone increased the DM content, total SSC, TA, as well as glucose, fructose and citric acid contents. A significantly higher lycopene and βcarotene content was also observed [on a fresh weight (FW) and dry weight (DW) basis] with a high EC in the root zone. The accumulation of different compounds that determine tomato fruit quality differed between the fifth and tenth truss. In particular, the lycopene content was reduced, whereas the βcarotene content was increased in the tenth truss with respect to the fifth truss, most likely because of higher temperatures during ripening of the tenth truss. Fruit pruning increased fruit FW by 42% and positively influenced the DM content and total anti-oxidant activity, while a negative effect was observed on lycopene and citric acid contents (on a FW and DW basis). EC and fruit pruning both had a strong effect on fruit size; however, EC had a much stronger impact on taste and health-related fruit quality attributes. A small interaction between EC and fruit pruning was found for marketable yield, fructose and glucose content, fruit firmness, and P and Ca concentrations in fruits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call