Abstract

The effect of electric fields on the propagation speed of tribrachial (or triple) flames has been investigated in a coflow jet by observing the transient flame propagation behavior after ignition. The propagation speed of tribrachial edges when no electric fields were applied showed typical behavior by having an inverse proportionality to the mixture fraction gradient at the flame edge. The behavior of flame propagation with electric fields was investigated by applying high voltage to the central fuel nozzle, thereby having a single-electrode configuration. The enhancement of propagation speed has been observed by varying the applied voltage and frequency for ac electric fields. The propagation speed of tribrachial flames was also investigated by applying positive and negative dc voltages to the nozzle, and similar improvements of the propagation speed were also observed. The propagation speeds of tribrachial flames in both the ac and dc electric fields correlated well with the electric field intensity, defined by the applied electric voltage divided by the distance between the nozzle electrode and the edge of the tribrachial flame.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call