Abstract
AbstractThe interturn paper insulation of oil‐immersed power transformer windings, under the combined influence of electric fields, moisture, and conductor heating, will produce bubbles, which pose a significant threat to the insulation system. However, there is limited research on the characteristics of bubble evolution in oil–paper insulation under the influence of electric fields and the subsequent dissolution process. Based on the continuous observation of bubble size using electron microscopes, experimental and theoretical investigations into the formation and dissolution of bubbles under electric field conditions are presented. The effects of different field strengths on bubble evolution and dissolution characteristics were studied. The results showed that the electric field promoted both the generation and dissolution of bubbles, with a more pronounced effect observed at higher field strengths (below partial discharge (PD) inception electric field, hereafter referred to as PDIE). However, when the field strength exceeded PDIE, the bubbles tended to shrink and gradually increase in size. The changes in bubble volume were related to not only gas diffusion but also oxygen consumption and fault gases generation due to PD. A better understanding of the formation and dissolution characteristics of bubbles under varying field strengths is achieved. Furthermore, it also provides a reference for assessing the risk of bubble generation and conducting bubble‐related fault diagnosis during the overload operation of oil‐immersed power equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.