Abstract
Scaling of silicon devices is fast approaching the limit where a single gate may fail to retain effective control over the channel region. Of the alternative device structures under focus, silicon nanowire transistors (SNWT) show great promise in terms of scalability, performance, and ease of fabrication. Here we present the results of self-consistent, fully 3D quantum mechanical simulations of SNWTs to show the role of surface roughness (SR) and ionized dopant scattering on the transport of carriers. We find that the addition of SR, in conjunction with impurity scattering, causes additional quantum interference which increases the variation of the operational parameters of the SNWT. However, we also find that quantum interference and elastic processes can be overcome to obtain nearly ballistic behavior in devices with preferential dopant configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.