Abstract
This study aimed to compare the effect of the early postmenopausal period on resting-state electroencephalographic spectral power with that of the premenopausal period and to analyze the correlation between electroencephalographic spectral power values and endogenous ovarian hormone levels. This study involved 13 early postmenopausal women and 10 premenopausal women in the early follicular, 10 in the ovulatory phase, and 10 in the early luteal phase who underwent resting-state quantitative electroencephalographic spectral power with eyes closed and endogenous ovarian hormone measurements. The delta, theta, alpha1, alpha2, beta1, and beta2 absolute power were compared between the early postmenopausal and premenopausal groups. Correlations between electroencephalographic spectral power values and 17β estradiol, progesterone, follicle-stimulating hormone (FSH), and luteinizing hormone levels were analyzed in early postmenopausal women. Compared with the premenopausal group, the early postmenopausal group showed significantly higher resting-state theta power in the frontal region, alpha1 and alpha2 power in the frontal and central regions, beta1 power in the frontal, central, parietal, and occipital regions, and beta2 power in the centroparietal region. Beta2 power values were positively correlated with FSH levels. The current findings highlight that early postmenopausal women show greater resting-state alpha and beta power, which suggests cortical excitability of fast frequency bands involved in states of alertness, focus of attention, cognition, and emotion. Additionally, we emphasized the effect of FSH levels on fast cortical activation in early postmenopausal women.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have