Abstract

The effects of dynamic high-pressure microfluidization (DHPM at 400 MPa) and heat treatment (HT) on the microbial inactivation, quality parameters, and flavor components of not-from-concentrate (NFC) cucumber juice were investigated. Total aerobic bacteria, yeasts and molds were not detected in the 400 MPa-treated cucumber juice. Total phenolic content increased by 16.2% in the 400 MPa-treated cucumber juice compared to the control check (CK). The significant reduction in pulp particle size (volume peak decreasing from 100-1000 μm to 10-100 μm) and viscosity increased the stability of the cucumber juice while decreasing the fluid resistance during processing. HT decreased the ascorbic acid content by 25.9% (p < 0.05), while the decrease in ascorbic acid content was not significant after 400 MPa treatment. A total of 59 volatile aroma substances were identified by gas chromatography-ion mobility spectrometry (GC-IMS), and a variety of characteristic aroma substances (i.e., valeraldehyde, (E)-2-hexenal, (E)-2-nonenal, and (E,Z)-2,6-nonadienal, among others) were retained after treatment with 400 MPa. In this study, DHPM technology was innovatively applied to cucumber juice processing with the aim of providing a continuous non-thermal processing technology for the industrial production of cucumber juice. Our results provide a theoretical basis for the application of DHPM technology in cucumber juice production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.