Abstract

Drying fruits and vegetables is a long-established preservation method, and for tomatoes, in most cases sun-drying is preferred. Semi-drying is relatively a new application aimed to preserve better the original tomato properties. We have assessed the effects of different drying methods on the phytochemical variation in tomato products using untargeted metabolomics and targeted analyses of key compounds. An LC-MS approach enabled the relative quantification of 890 mostly semi-polar secondary metabolites and GC–MS analysis in the relative quantification of 270 polar, mostly primary metabolites. Metabolite profiles of sun-dried and oven-dried samples were clearly distinct and temperature-dependent. Both treatments caused drastic changes in lycopene and vitamins with losses up to > 99% compared to freeze-dried controls. Semi-drying had less impact on these compounds. In vitro bioaccessibility analyses of total phenolic compounds and antioxidants in a gastrointestinal digestion protocol revealed the highest recovery rates in semi-dried fruits. Semi-drying is a better way of preserving tomato phytochemicals, based on both composition and bioaccessibility results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.