Abstract
ABSTRACT Regular surface roughness could be created on the surface of a pressure-sensitive adhesive (PSA) film through Marangoni flow during the drying process. Therefore, tailoring of both surface and bulk characteristics of the PSA and consequently its adhesion strength could be expected by controlling the drying conditions. Herein, surface and bulk properties of a water-based PSA dried at various temperatures and humidities were scrutinized. Increase in the drying temperature improved the adhesion strength of the PSA to poly(ethylene terephthalate) due to enhanced surface nanoroughness of its film. At constant humidity, the higher the Péclet number, the higher the Marangoni number and the rougher the PSA film surface. Drying humidity rise, however, improved the adhesion strength due to more uniform distribution of copolymers constituting the PSA, better interdiffusion of chains through the interface of polymer particles in a prolonged drying process, and increased surface free energy of the film. The adhesion strength of the PSA, similar to the here-defined viscoelastic dissipation ability, demonstrated a power dependence on the film surface nanoroughness. This newly-defined parameter considers taking advantage of the real viscoelastic dissipation of the PSA regarding its potentiality through thorough wetting of the substrate surface with the PSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.