Abstract

AbstractBACKGROUND: This paper presents a mathematical modeling and factorial analysis of the toluene combustion activity of a cordierite monolith supported copper–manganese–silver mixed‐oxide catalyst in the drying and calcination processes, using response surface methodology. A central composite rotatable design is performed to collectively study the effect of drying temperature, calcination temperature and calcination time. Experimental results are provided to confirm the validity of the models developed.RESULTS: The calcination temperature is the most significant process factor affecting the catalytic combustion activity. It is also shown that the combustion activity increases in most cases with decreasing calcination time and that a moderate calcination or drying temperature is required to increase the combustion activity. The optimal factor levels are drying temperature 160 °C, calcination temperature 500 °C, and calcination time 3 h.CONCLUSIONS: There is significant scope to improve the combustion activity of the monolithic catalyst through the optimization of the drying and calcination process factors. Response surface methodology is an effective technique for mathematical modeling and factorial analysis of the catalytic activity of monolithic catalysts. Copyright © 2010 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.