Abstract

Retrograded starches have received increasing attention due to their potential excipient properties in pharmaceutical formulations. However, to evade its application-oriented challenges, modification of retrograded starch is required. The study emphasizes influence of dry heating and the dual heat treatment by dry heating amalgamation with the vacuum heat treatment on quality parameters of retrograded starch. The starch was isolated by using two different extraction media (0.05 % w/v NaOH and 0.03 % citric acid) from Alocasia macrorrhizos and then retrograded separately. Further, retrograded starches were first modified by dry heating and afterwards modified with combination of dry and vacuum heating. Modification decreased moisture, ash content and increased solubility. Modified Samples from NaOH media had higher water holding capacity and amylose content. X-ray diffraction revealed type A and B crystals with increasing crystallinity of retrograded heat-modified samples from NaOH media. Thermogravimetric analysis, differential scanning calorimetry confirmed thermal stability. Shear tests showed shear-thinning behavior whereas dominant storage modulus (G/) over loss modulus (G//), depicting gel-like behavior. Storage, loss, and complex viscosity initially increased, then decreased with temperature. In-vitro release reflects, modified retrograded starches offers versatile drug release profiles, from controlled to rapid. Tailoring starch properties enables precise drug delivery, enhancing pharmaceutical formulation flexibility and efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call