Abstract

The mechanical properties of polymer-based amorphous solid dispersions (ASDs) are susceptible to changes in relative humidity (RH) conditions. The purpose of this study is to understand the impact of RH on both the mechanical properties and tableting performance of Celecoxib-polyvinyl pyrrolidone vinyl acetate co-polymer (PVP/VA 64) ASDs. The ASDs were prepared by solvent evaporation technique to obtain films for nanoindentation, which were also pulverized to obtain powder for compaction. Our results show that higher RH corresponds to lower Hardness, H, and Elastic Modulus, E. At a given RH, both the E and H increase with drug loading to a maximum and decrease with further drug loading. Using ASD powders with a narrow particle size range (d50 = 9–14 µm), we have demonstrated that increasing RH from 11% to 67% leads to improved tablet tensile strength for pure PVP/VA 64 and the ASDs. However, the extent of the increase in tablet tensile strength depends on their mechanical properties, H and E, and drug loading. At a higher compaction pressure and a higher RH, the effect of ASD mechanical properties on tabletability is less because the particles are nearly fully deformed so that bonding areas are approximately the same. Thus, difference in tablet strength is mainly contributed by the inter-particulate forces of attraction. Understanding the impact of these key processing conditions, i.e., RH and compaction pressure, will guide the design of an ASD tablet formulation with robust manufacturability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.