Abstract

ABSTRACT This work uses first-principles total energy calculations on the basis of density functional theory to predict the structural stability, mechanical and thermodynamic properties of Zn atom doped AlLi phase in Mg–Li–Al–Zn alloy. The values of the equilibrium lattice parameters and the formation of enthalpy are highly consistent with the experimental and previous calculations results available. Negative enthalpies of formation ΔH are predicted for all AlLi phase doped concentrations which have positive consequences for its structural stability. The elastic modulus is deduced by Voigt–Reuss–Hill arithmetic approximation. The bulk modulus of the Al–Li–Zn compounds increases as the doping concentrations increase, which are larger than the value of the AlLi phase. In particular, the stability and mechanical anisotropy of the Al–Li–Zn compounds are discussed. The charge density cloud map is drawn to reveal the bonding characteristics of four compounds. The changes in thermodynamic properties are derived by the phonon frequencies within the quasi-harmonic approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.