Abstract

The liquid oxidation behaviors of Sn–40Bi–2Zn and Sn–40Bi–2Zn–0.005Al solders were investigated from thermal dynamics and kinetics analysis. The characteristics of surface oxidation film at 170 °C were studied by thermo gravimetric analysis and X-ray photoelectron spectroscopy (XPS). Sn–40Bi–2Zn solder performed inferiorly in oxidation prevention performance, due to the formation of ZnO, which exhibits lower Gibbs free energy of formation and higher growth rate. Trace amount of Al addition, however, alleviated the oxidation behavior of Zn. XPS depth profile results indicated that the surface layer of Sn–40Bi–2Zn–0.005Al consisted of oxides of Al and Zn formed on the outer surface of the solder film and in the subsequent layer, mainly formed by the oxides of Sn, Bi. Al, basically formed as Al2O3, segregated towards the outer surface, seemed to deter the Zn oxidation on the solder surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.