Abstract
We have determined the effects of dope extrusion speed (or shear rate within a spinneret) during hollow fibre spinning on ultrafiltration membrane's morphology, permeability and separation performance, and thermal and mechanical properties. We purposely chose wet-spinning process to fabricate the hollow fibres without drawing and used water as the external coagulant in the belief that the effects of gravity and elongation stress on fibre formation could be significantly reduced and the orientation induced by shear stress within the spinneret could be frozen into the wet-spun fibres. An 86/14 (weight ratio) NMP/H 2O mixture was employed as the bore fluid with a constant ratio of dope fluid to bore fluid flow rate while increasing the spinning speed from 2.0 to 17.2 m/min in order to minimise the complicated coupling effects of elongation stress, uneven external solvent exchange rates, and inner skin resistance on fibre formation and separation performance. Hollow fibre UF membranes were made from a dope solution containing polyethersulphone (PES)/ N-methyl-2-pyrrolidone (NMP)/diethylene glycol (DG) with a weight ratio of 18/42/40. This dope formulation was very close to its cloud point (binodal line) in order to speed up the coagulation of nascent fibres as much as possible so that the relaxation effect on molecular orientation was reduced. Experimental results suggested that a higher dope flow rate (shear rate) in the spinneret resulted in a hollow fibre UF membrane with a smaller pore size and a denser skin due to a greater molecular orientation. As a result, when the dope extrusion speed increased, pore size, water permeability, CTE and elongation of the final membranes decreased, but the separation performance, storage modulus, tensile strength and Young's modulus increased. Most surprisingly, for the first time, we found that there was a certain critical value, when the dope extrusion rate was over this value, the final fibre performance could not be influenced significantly. The results suggested that it was possible to dramatically enhance the production efficiency of hollow fibre UF membranes with the same fibre dimension and similar separation performance by the method proposed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.