Abstract

It was recognized that the introducing of a narrow metallic band states in the crystal structure of semiconductors make materials that they can be used as intermediate band materials for improving the power conversion efficiency of high band gap single junction solar cells. In these structures intermediate bands would serve as a “stepping stone” for photons with different energies to excite electrons from the valence to the conduction bands. Low-energy photons can be captured by this method that would pass through a conventional solar cell. An optimal IBSC (intermediate band solar cells) has a total band gap of about 1.95 eV and 3C-SiC has the closest band gap to this value (band gap of 2.2 eV). Excellent electronic properties of 3C-SiC such as high electron mobility and saturated electron drift velocity and its suitable band gap makes it an important alternative material for light harvesting technologies instead of conventional semiconductors like silicon. In this condition detailed balance analysis predicts a limiting efficiency of more than 55 % for an optimized, single junction intermediate band solar cell that it is higher than efficiency of an optimized two junction tandem solar cell. In this study we have analyzed Fe doped 3C-SiC by ab initio calculations for Fe concentration of 1.05, 1.85, 3.22, and 5.55 %. The results show conversion efficiency for designed solar cell change with altering in Fe contents. The maximum efficiency has been obtained for crystals with 3 % Fe3+ as dopant in 3C-SiC structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call