Abstract
Endogenous and exogenous photosensitizers induce DNA damage, leading to carcinogenesis. Further, DNA is an important target biomacromolecule of photodynamic therapy (PDT) for cancer. Since the solar-induced DNA damage and PDT reaction occur in a complex biological environment, the interaction between biomolecule and photosensitizer is important. In this study, we examined the effect of a DNA microenvironment on the photosensitized reaction by watersoluble porphyrin derivatives, tetrakis(N-methyl-p-pyridinio)porphyrin (H(2)TMPyP) and its zinc complex (ZnTMPyP). In the presence of a sufficient concentration of DNA, H(2)TMPyP mainly intercalates to calf thymus DNA, whereas ZnTMPyP binds into a DNA groove. An electrostatic interaction with DNA raises the redox potential of the binding porphyrins. This effect suppressed the photoinduced electron transfer from an electron donor to the DNA-binding porphyrins, whereas the electron transfer from the porphyrins to the electron acceptor was enhanced. In the case of hydrophobic electron acceptors, static complexes with porphyrins were formed, making rapid electron transfer possible. Since the interaction with DNA cleaved this complex, the electron transfer rate was decreased in the presence of DNA. The microenvironment of a DNA strand may assist or inhibit its oxidative damage by photoinduced electron transfer through an electrostatic interaction with binding photosensitizers and the steric effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.