Abstract

Effect of the charge (negative, positive or neutral) of amino acid residue-13 on the photoinduced electron transfer (ET) from Trp32, Tyr35 and Trp106 to the excited isoalloxazine was evaluated in the flavin mononucleotide-binding protein from Desulfovibrio vulgaris isolate Miyazaki F (DvFBP). The protein structures of the wild type and the four isoforms where glutamic acid-13 is replaced with lysine (E13K), arginine (E13R), threonine (E13T) and glutamine (E13Q) in aqueous solution were obtained by molecular dynamics simulation. The distances between the amino acid residue-13 and isoalloxazine (Iso), and between the amino acid residue-13 and the ET donors were longer than 1 nm. The ET rates were evaluated with the Kakitani and Mataga model (KM theory) from their ultrafast fluorescence dynamics by means of a non-linear least squares method. Electrostatic (ES) energies between the photo-products and other ionic groups in the proteins markedly varied among ET donors and among the DvFBP isoforms, while the other physical quantities related to the ET rates, the solvent reorganisation and ES energies between the Iso anion and the donor cations did not vary much between the proteins and donors. A plot of the logarithmic ET rates versus either the total free energy gaps or the net ES energies between the photo-products and the other ionic groups both displayed a parabolic function and so the net ES energies are an important influential factor upon the ET rate, in addition to the donor–acceptor distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call