Abstract

The effect of edge and screw dislocations on the electrical and optical properties of n-type Al0.34Ga0.66N is investigated. It is found that edge dislocations strongly affect the electrical properties of n-type Al0.34Ga0.66N. Both free carrier concentration and mobility decrease with increasing edge dislocation density. Edge dislocations also enhance nonradiative recombination, which is indicated by decreasing near-band-edge UV as well as parasitic blue photoluminescence. The UV/blue ratio is found to be independent of the edge dislocation density but strongly depends on the Si doping concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.