Abstract

Chlorine, UV254, and ozone are three typical processes commonly used for wastewater disinfection, which could change the photoreactivity of dissolved organic matter (DOM) in effluents of wastewater treatment plants (WWTPs). The photoinduced reactive species (RS) from DOM, primarily including the excited triplet state of DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radical (•OH), play important roles in the attenuation of contaminants. However, the effect of disinfection processes on the photosensitized degradation of contaminants is poorly understood. This paper presents the first evidence that 3DOM*, 1O2, and •OH interaction with three typical contaminants (diphenhydramine, cimetidine, and N,N-diethyl-m-toluamide (DEET)) was largely impacted by DOM after disinfection. The results of electron spin resonance (ESR) spectrometry and laser flash photolysis (LFP) experiments demonstrated that the chlorination increased the formation rate of 3DOM* and 1O2, while UV254 irradiation and ozonation decreased the formation rate of these RS. All these three disinfection processes promoted the photoproduction of •OH and increased the photodegradation rate constants (kobs) of DEET by 26−361%. The kobs of diphenhydramine, cimetidine, and DEET correlated positively with the formation rate of 3DOM*, 1O2, and •OH, respectively. The bimolecular reaction rate constant of 3DOM* with diphenhydramine increased by ∼41% after chlorination. These findings suggest that disinfection processes altered the photogeneration of RS from DOM, which significantly impacts the fate of trace pollutants in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call