Abstract

We study the effect of a dilute homogeneous spatial distribution of non-magnetic impurities on the equilibrium supercurrent sustained by a ballistic graphene Josephson junction in the short junction limit. Within the Dirac-Bogoliubov-de Gennes approach and modeling impurities by the Anderson model we derive the supercurrent and its equilibrium power spectrum. We find a modification of the current-phase relation with a reduction of the skewness induced by disorder, and a nonmonotonic temperature dependence of the critical current. The potentialities of the supercurrent power spectrum for accurate spectroscopy of the hybridized Andreev bound states-impurities spectrum are highlighted. In the low temperature limit, the supercurrent zero frequency thermal noise directly probes the spectral function at the Fermi energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call