Abstract

Abstract The concept of diffusion-assisting holes (DAHs) has been developed to increase matrix deposition in the middle layers of the thick-section ceramic matrix composites (CMCs) that are fabricated by chemical vapor infiltration (CVI). However, the effect of DAHs on the tensile properties of CMCs has not been studied. Here, the tensile properties and the state of matrix deposition of a 10-mm-thick two dimensional (2D) C/SiC with DAHs are investigated. Results showed, with DAHs, a zone of increased deposition with a radius of ca. 1.4 mm around a hole was introduced and the net-section strength of the 10-mm-thick 2D C/SiC was increased by 48.1%. In addition, the tensile load bearing capacity was also increased by 34.1%, although the load bearing section decreased with DAHs. The increased net-section strength and tensile load bearing capacity of the C/SiC are attributed to the increased matrix deposition in the middle layers of the thick-section composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.