Abstract

The aim of this study was to evaluate the effect of different water-to-powder (WP) proportions on the microhardness and water solubility of calcium-enriched mixture (CEM) cement. One gram of CEM cement powder was mixed with 0.33 mL, 0.4 mL or 0.5 mL CEM liquid. For water solubility, a total of 60 specimens were prepared (n=20 per each ratio) in the disk-shaped stainless-steel molds with a height of 1.5±0.1 mm and internal diameter of 10.0±0.1 mm. The specimens of each WP ratio were randomly divided into two subgroups: half (n=10) were immersed for one day and the other half (n=10), were kept for 21 days in distilled water. The solubility was calculated as a percentage of the weight loss. To measure microhardness, a total of 30 samples were prepared (10 per each ratio, n=10). The mixtures were transferred to metallic cylindrical molds with internal dimensions of 6±0.1 mm height and 4±0.1 mm diameters. After 4 days the specimens were subjected to Vicker's test. The data were analyzed using two-way ANOVA and post-hoc Tukey's tests at a significance level of 0.05. The 0.33 WP ratio showed significantly greater microhardness value (25.98±2.77) compared to 0.4 and 0.5 proportions (P=0.004 and P<0.001 respectively). Significant differences were observed between water solubility values of different WP ratios at both time intervals (P<0.001). At both time intervals, 0.33 and 0.5 WP ratios exhibited the lowest and highest solubility, respectively. According to the results of this in vitro study, higher WP ratios result in lower microhardness and higher water solubility of the CEM cement. Therefore, the 0.33 WP ratio would be the ideal proportion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.