Abstract

We investigated the effect of different solvents on the Cu micropatterns formed via femtosecond laser reduction patterning. Solvents such as ethylene glycol, 2-propanol, and glycerol were mixed with CuO nanoparticles and polyvinylpyrrolidone. The degree of reduction and the resistivity of the fabricated micropatterns depended on the solvent. Glycerol was the most effective reducing agent. This solution was used to fabricate Cu/Cu2O composite micro-temperature sensors. Cu-rich electrodes and Cu2O-rich sensors were selectively formed by controlling the laser scanning speed at 5 mm/s and 0.5 mm/s, respectively, when the pulse energy was 0.53 nJ. The temperature sensor exhibited a negative temperature coefficient of the resistance, which was consistent with the value for Cu2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.