Abstract

Red emissive carbon dots from sucrose (SCD) were synthesized using a facile, isolation-free, one-pot method via microwave pyrolysis. Various passivation agents were used along with sucrose, and a relative change in the chemical and optical properties of the carbon dots was investigated. A detailed systematic study of the effect of various passivations, different solvents, pHs, and temperatures on optical properties was carried out. The influence of excitation wavelength and passivation on photoluminescence (PL) is discussed considering the functional groups associated with the passivating agents. The effect of different solvents on dispersibility and PL behavior has been understood in terms of the dielectric properties of the solvents. The decrease in PL intensity of SCD from pH 3 to 11 facilitates pH sensing. The PL of SCD was found to be essentially stable between the temperature range of 20 and 80 °C. Additionally, the effects of physicochemical properties with respect to passivation, such as charge and surface chemistry in determining the cellular uptake and cytotoxicity, are also addressed. Aside from sensors, the potential of SCDs as bioimaging agents has also been studied for mammalian cells. Moreover, SCD exhibits excellent PL stability investigated under different storage conditions for 15 days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call