Abstract

Objective To research the effect of different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration intervals on the behavior and pathology of mouse models of Parkinson's disease. Methods Eighteen C57 male mice were divided into a control group, subacute model group, and chronic model group (6 mice per group). Animal models of Parkinson's disease were built according to MPTP administration. The behavior of mice was determined through an open-field test and pole test. Tyrosine hydroxylase expression in brain tissues was checked by immunohistochemistry and western blot. Result In the open-field test, the total activity distance in the chronic model group (1271.05 ± 207.93 cm) was reduced significantly compared with that of the control group (1964.21 ± 379.77 cm), while the distance had no significant differences in the subacute model group (1950.57 ± 273.54 cm). At the same time, the number of times the mice crossed the center grid in the chronic model group (3.17 ± 1.17) was reduced compared with that in the control group (11.67 ± 6.65), while there were few differences in the subacute model group (9.33 ± 2.81). In the pole test, the climbing time (8.49 ± 1.44 s) and total rest time (103.64 ± 26.57 s) of mice in the chronic model group were longer than those in the control group, respectively (4.31 ± 0.70 s, 45.21 ± 14.36 s), while there were no significant differences in the subacute model group (4.51 ± 0.48 s, 52.44 ± 25.98 s). Besides, compared with the control group, TH expression in the subacute model group and chronic model group was reduced notably, and the changes of TH expression in the chronic model group were more significant. Conclusion There is a little loss of midbrain dopaminergic neurons in the subacute Parkinson's disease mouse models induced by continuous MPTP administration, but there is no effect on the behavior. Long interval MPTP-induced chronic Parkinson's disease mouse models lose a lot of dopaminergic neurons, which is accompanied by anxiety-like behaviors in addition to motor dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call