Abstract

The sea grape (Caulerpa racemosa) has a chlorophyll pigment that can be extracted using a non-polar solvent. Chlorophyll as a natural dye has unstable characteristics of temperature, pH, and light. Microencapsulation by the freeze-drying method can be used to protect chlorophyll from degradation caused by external influences where the type of coating material can affect the characteristics of the chlorophyll microcapsules. The objective of this study was to determine the characteristics of chlorophyll microcapsules with various types of coating material. Chlorophyll was microencapsulated using maltodextrin (CM), maltodextrin-alginate (CMA), and maltodextrin-fish gelatin (CMG). Chlorophyll encapsulated with maltodextrin-alginate resulting in the highest yield. The results of FTIR analysis indicated the presence of following functional groups in chlorophyll microcapsules viz., inter- and intra-molecular bonded alcohol OH, C = N stretching imine/oxime or C = O stretching conjugated ketone or alkenes, OH phenol, and CN stretching amine. CM had a particle size between 9,061 – 469.9 nm, CMA between 9,707 – 363.5 nm, and CMG between 11.49 – 433.2 nm. Based on the observation of morphology by using SEM, it showed that the all of the chlorophyll microcapsules were in the form of flake shape and porous. CM and CMA looked more fragile than CMG it can be seen from the cracks in some parts of CM and CMA. Therefore, CMG release time was longer than CM and CMA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call