Abstract

The adsorption of quinoline from wastewater by coking coal (AC-1), HCl-modified coking coal (AC-2), HNO3-modified coking coal (AC-3), HF-modified coking coal (AC-4), and H2SO4-modified coking coals (AC-5) was investigated in this paper. The effects of acid-modified concentration, modification time, and adsorption time versus quinoline removal rate were studied by batch experiments. The quinoline concentration was measured by UV spectrophotometry, the average pore size and specific surface area of coking coal before and after modification were characterized through static nitrogen adsorption, the mineral composition of coking coal was tested by X-ray diffraction, the surface functional groups were tested by Fourier transform infrared spectroscopy, and the surface topography was tested using a scanning electron microscope. The experimental results showed that the adsorption capacity of coking coals was the best when both the modification time was 120 min and the acid-modified concentration was 0.1 mol·L–1 and the quinoline removal rate reaches the highest when the adsorption time was 120 min. The specific surface area of AC-2 increased from 2.898 to 3.637 m2·g–1, and the removal rate of quinoline increased from 77.64 to 90.61%. Acids reacted with inorganic mineral impurities within coking coal such as hydrogen vanadium phosphate hydrate, which caused an increase in the specific surface area. A new peak appeared in the Fourier transform infrared spectroscopy pattern at the wavenumber 2300 cm–1. The surface of coking coal modified by acids was rougher than that of AC-1. The adsorption capacity of coking coal was improved after modification, and modified coking coals have the highest potential as low-cost adsorbents for quinoline removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.