Abstract
Several experiments were conducted over the past few years to evaluate the feeding value of flax seed and oil in dairy cow diets. The current meta-analysis and meta-regression was undertaken to assess the overall effect of different forms of flax, as a source of trienoic (cis-9,cis-12,cis-15 18:3) fatty acids (FA), on lactation performance and on transfer efficiency of its constituent n-3 FA from diet to milk fat. Comparisons were first conducted with nonsupplemented controls or with diets containing either saturated (mainly 16:0 or 18:0 or both), monoenoic (mainly cis-9 18:1), or dienoic (mainly cis-9,cis-12 18:2) FA. Results indicate that supplementing flax seed and oil decreased dry matter intake, as well as actual and energy-corrected milk yield without affecting the efficiency of utilization of dietary dry matter or energy as compared with nonsupplemented iso-energetic controls. When compared with the other 3 types of dietary fat evaluated, flax rich in trienoic FA supported a yield of energy-corrected milk similar to supplements rich in saturated, monoenoic, or dienoic FA. Greater milk fat concentration and feed efficiency were observed with saturated supplements. However, milk fat concentration and yield were lower with dienoic FA than with flax supplements. Further analyses were conducted to compare the effect of different forms of flax oil, seed, or fractions of seed. Among the 6 categories evaluated, mechanically processed whole seed (rolled or ground) allowed the greatest yield of energy-corrected milk and the best feed efficiency when compared with free oil, intact or extruded whole seed, protected flax, and flax hulls. Feeding protected flax and flax hulls allowed the greatest milk fat concentration of cis-9,cis-12,cis-15 18:3. Moreover, the greatest transfer efficiencies of this fatty acid from diet to milk were recorded with the same 2 treatments, plus the mechanically processed whole seed. These results make this last category the most suitable treatment, among the 6 flax forms evaluated, to combine optimum lactation performance and protection of flax constituent cis-9,cis-12,cis-15 18:3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.