Abstract

Aluminum toxicity is well documented but the mechanism of action is poorly understood. In renal failure patients with aluminum overload, disturbances in iron metabolism leading to anemia are apparent. Few animal models, however, have been used to study the effects of dietary aluminum on iron metabolism. The purpose of this study was to determine if dietary aluminum exposure alters tissue iron and ferritin concentrations in the chick, as has been found in cultured human cells exposed to aluminum. Groups of day-old chicks were fed purified diets containing one of two levels of iron (control or high iron), and one of three levels of aluminum chloride in a 2×3 factorial design. Diets were consumed ad libitum for 1 week, then pair-feeding was initiated for 2 more weeks. A seventh group consumed a low iron diet ad libitum for comparative purposes. After the 3-week feeding period, samples of kidney, liver, and intestinal mucosa were analyzed for nonheme iron and ferritin concentrations by a colorimetric assay and SDS-PAGE, respectively. Results showed that dietary aluminum intake reduced iron stores in liver and intestine, but had no effect on nonheme iron levels in the kidney. Ferritin levels were reduced by aluminum intake in all tissues studied. The decreases in tissue ferritin levels were proportionately more than the decreases in tissue nonheme iron levels. This resulted in increased nonheme iron to ferritin ratios that amounted to as much as 140 and 525% in kidney and intestine, respectively. These findings are consistent with the interpretation that, in the growing chick, dietary aluminum can inhibit iron absorption, disrupt the regulation of tissue ferritin levels by iron, and potentially alter the compartmentalization and protective sequestration of iron within cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.