Abstract

To determine the effects of repeated physical activity on iron and zinc homeostases in a living system, we quantified blood and tissue levels of these two metals in sedentary and physically active Long-Evans rats. At post-natal day (PND) 22, female rats were assigned to either a sedentary or an active treatment group (n = 10/group). The physically active rats increased their use of a commercially-constructed stainless steel wire wheel so that, by the end of the study (PND 101), they were running an average of 512.8 ± 31.9 (mean ± standard error) min/night. After euthanization, plasma and aliquots of liver, lung, heart, and gastrocnemius muscle were obtained. Following digestion, non-heme iron and zinc concentrations in plasma and tissues were measured using inductively coupled plasma optical emission spectroscopy. Concentrations of both non-heme iron and zinc in plasma and liver were significantly decreased among the physically active rats relative to the sedentary animals. In the lung, both metals were increased in concentration among the physically active animals but the change in zinc did not reach significance. Similarly, tissue non-heme iron and zinc levels were both increased in heart and muscle from the physically active group. It is concluded that repeated physical activity in an animal model can be associated with a translocation of both iron and zinc from sites of storage (e.g. liver) to tissues with increased metabolism (e.g. the lung, heart, and skeletal muscle).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.