Abstract

ABSTRACTCarbon black filled natural rubber (NR) vulcanizates were devulcanized at ambient temperature in a two roll mill. The effect of cure system, that is, conventional vulcanization (CV), semiefficient vulcanization (semi EV), and efficient vulcanization (EV) systems, used for vulcanization of the original sample, on the efficiency of devulcanization was studied. The efficiency of devulcanization expressed as percentage devulcanization of the samples calculated from residual crosslink density measurements was correlated with the sol fraction of the devulcanized samples based on Horikx analysis. Using chemical probe analysis, we determined (i) the crosslink distribution pattern of the original sample, (ii) the extent to which the different types of crosslinks—that is, polysulfidic, disulfidic, and monosulfidic crosslinks—have been debonded or broken during the shearing process in the two roll mill, and (iii) the pattern of bond formation during revulcanization. Mechanical shearing predominantly breaks the majority crosslink type (polysulfidic crosslinks in CV and semi EV cure systems and disulfidic crosslinks in EV samples). Irrespective of the significant reduction in total crosslink density in all three sets of samples, chain shortening reactions similar to the post-crosslinking chemical reactions at curing temperatures also occur during mechanical shear at ambient conditions, which increased the absolute value of monosulfidic links in CV and semi EV systems. However, in the devulcanized EV system, the absolute value of polysulfidic crosslinks increased, which might be due to the re-crosslinking of the cleaved bonds. All the devulcanized samples were revulcanized, and the mechanical and morphological properties were analyzed. The percentage retention of the vulcanizate properties after revulcanization of the devulcanized samples correlated very well with efficiency of devulcanization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.