Abstract

Groundwater with high geogenic phosphorus (P) is increasingly concerned as a potential risk to surface water eutrophication. Although hydrogeochemical processes responsible for P mobilization in groundwater systems have been studied, the burial characteristics of P and the effect of depositional evolution on P enrichment in aquifer sediments remain unclear. In this study, aquifer sediments were collected from the Dongting Lake Plain (DTP) within the central Yangtze River Basin, a high P groundwater area, and the effect of depositional evolution on P enrichment was elucidated by comprehensively analyzing the lithology, grain size, geochronology, and geochemistry of the sediments, coupled with groundwater chemistry and sediment incubation experiments. The results showed that the contents of total organic carbon (TOC), iron (Fe), and P (the relative content of bioavailable phosphorus (BAP)) were higher in lacustrine sediments deposited under a warm-wet climate, but lower in fluvial sediments deposited under a cold-dry climate. During depositional evolution, the sedimentary facies mainly controlled the content of organic phosphorus (OP), while the paleo-climate controlled the content of both OP and Fe-bound inorganic P (FeP), which jointly affected total P content in aquifer sediments. Under the interaction of groundwater and sediment, the reductive dissolution of P-rich Fe (oxyhydr)oxides and the mineralization of OP in sediment continuously release P into groundwater. Notably, the rapid accumulation of alluvial sediments after the Last Glacial Maximum in the DTP and rapid evolution of Dongting Lake during the Holocene led to a large amount of organic matter (OM) and P buried in sediments, providing materials for P release in aquifers, which seriously threatens groundwater quality. This exploration can provide a new understanding of the enrichment of geogenic P in groundwater from the perspective of depositional evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call