Abstract
The effects of ethanol, 1,2-propanediol, and glycerol at concentrations from 10 % to 40 % on the thermal denaturation and aggregation of silver carp (Hypophthalmichthys molitrix) myosin were investigated. The results revealed that ethanol and 1,2-propanediol induced thermal denaturation of myosin more rapidly than glycerol, which minimally impacted the secondary structure. At 10 % concentration, 1,2-propanediol significantly influenced myosin's secondary structure more than ethanol. While at a concentration of 20 %, ethanol prompted faster thermal denaturation and aggregation, resulting in higher turbidity than 1,2-propanediol (P < 0.05). Notably, higher concentrations of ethanol (30 % and 40 %) and 1,2-propanediol (40 %) induced the formation of non-disulfide covalent bonds, contributing to excessive myosin aggregation. Furthermore, hydrophobic interactions emerged as crucial within myosin aggregation in glycerol solutions during heating. Additionally, the effects of three alcohols at 1 %, 3 %, and 5 % on the gel properties were investigated. The results showed that an appropriate concentration of 1,2-propanediol (3 %) and glycerol (5 %) significantly enhanced the gel properties by inducing desirable unfolding and aggregation of myosin molecules. These findings offer a theoretical foundation for utilizing alcohol additives to enhance the gel quality of heat-induced surimi.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have