Abstract

This work addresses the influence of deformation temperature in a range from −40°C to 200°C on the microstructure evolution and mechanical properties of a low‐carbon high‐manganese austenitic steel. The temperature range was chosen to cope at the time during sheet processing or car crash events. Experimental results show that yield stress and ultimate tensile strength gradually deteriorate with an increase in the tensile testing temperature. The dominant mechanism responsible for the strain hardening of steel changes as a function of deformation temperature, which is related to stacking fault energy (SFE) changes. When the deformation temperature rises, twinning decreases while a role of dislocation slip increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.