Abstract

A differential-speed rolling (DSR) was applied to AZ31 magnesium alloy sample at different rolling temperatures of 473, 523, 573, and 623 K with 1-pass and 2-pass operations. The microstructural evolution and mechanical properties of the deformed samples were investigated. The rolling temperature was found to be an important parameter affecting the microstructural development. After DSR at 473 K, the microstructure was more homogeneous than that obtained after deformation by equal-speed rolling (ESR). The fully recrystallized microstructures were generated after DSR at 573 and 623 K. As to mechanical properties, the yield strength (YS) and ultimate tensile strength (UTS) decreased monotonously with increasing rolling temperature. In contrast, the elongation of the DSR-deformed samples was improved as the rolling temperature increased. The strain hardening exponent (n) calculated by Hollomon equation increased with increasing the rolling temperature, which would explain an increase in the uniform elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.