Abstract

We used laser-induced fluorescence imaging with a varying beam focal point to observe ablation plumes from metal and oxide samples of gadolinium. The plumes expand vertically when the focal point is far from the sample surface. In contrast, the plume becomes hemispherical when the focal point is on the sample surface. In addition, the internal plume structure and the composition of the ablated atomic and ionic particles also vary significantly. The fluorescence intensity of a plume from a metal sample is greater than that from an oxide sample, which suggests that the number of monatomic species produced in each plume differs. For both the metal and oxide samples, the most intense fluorescence from atomic (ionic) species is observed with the beam focal point at 3–4 mm (2 mm) from the sample surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.