Abstract

In the present article anisotropic solutions with vanishing complexity in the framework of f(Q) gravity are generated. At first, the field equations in f(Q)-gravity are gravitationally decoupled where the isotropic fluid component corresponds to Vlasenko–Pronin space-time. Then, with a new source, the complete geometric deformation is supplemented to an isotropic component, and the related deformation function is derived by the method known as mimicking of mass constraints. Furthermore, the generated anisotropic solution prevails all the physical tests along with the stability analysis with respect to the decoupling parameter as well as the f(Q) gravity parameter and it accomplishes the physical representation of observational constraint related to stars, namely, SMC X-1, 2 S 0921-630, PSR J0437-4715, Vela X-1, PSR J1748-2021B which are reflected in Mass–Radius curves. Hence, the study comes out to be worthy of the fact that the f(Q) gravity parameter directly influences the maximum mass of a compact stellar configuration for the fixed decoupling parameter in the context of gravitational decoupling where it predicts the star PSR J1748-2021B having highest mass 2.74 M⊙\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M_{\\odot }$$\\end{document}. It is noted that when the decoupling parameter (α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}) increases, the central value of the adiabatic index value also increases, while the reverse situation occurs when the f(Q)-parameter (β1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta _1$$\\end{document}) gets increased. This implies that both the parameters α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document} and β1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta _1$$\\end{document} have the overall controlling power on the stability of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call