Abstract

Human movement is a key factor in infectious diseases spread such as dengue. Here, we explore a mathematical modeling approach based on a system of ordinary differential equations to study the effect of human movement on characteristics of dengue dynamics such as the existence of endemic equilibria, and the start, duration, and amplitude of the outbreak. The model considers that every day is divided into two periods: high-activity and low-activity. Periodic human movement between patches occurs in discrete times. Based on numerical simulations, we show unexpected scenarios such as the disease extinction in regions where the local basic reproductive number is greater than 1. In the same way, we obtain scenarios where outbreaks appear despite the fact that the local basic reproductive numbers in these regions are less than 1 and the outbreak size depends on the length of high-activity and low-activity periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call