Abstract
This paper presents a novel method for cutting force modeling related to peripheral milling of curved surfaces including the effect of cutter runout, which often changes the rotation radii of cutting points. Emphasis is put on how to efficiently incorporate the continuously changing workpiece geometry along the tool path into the calculation procedure of tool position, feed direction, instantaneous uncut chip thickness (IUCT) and entry/exit angles, which are required in the calculation of cutting force. Mathematical models are derived in detail to calculate these process parameters in occurrence of cutter runout. On the basis of developed models, some key techniques related to the prediction of the instantaneous cutting forces in peripheral milling of curved surfaces are suggested together with a whole simulation procedure. Experiments are performed to verify the predicted cutting forces; meanwhile, the efficiency of the proposed method is highlighted by a comparative study of the existing method taken from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.