Abstract

Biochar produced from rice straw at 400°C (RS400) was prepared to determine its alleviating effect on Cd phytotoxicity to wheat seedlings under different cultivation temperatures and pH. A hydroponic system (pH4.3) and a loam soil slurry system were designed to respectively simulate acidic and neutral soil condition, and cultivation at increasing temperatures (20, 25, and 30°C) were performed to evaluate the greenhouse effect. The root and shoot elongation and the Cd concentration in root and solution were measured; furthermore, batch experiments for Cd adsorption were undertaken. An increasing inhibition of the root by Cd addition was observed at increasing temperatures. The inhibition rate was 50.50 and 20.80% in hydroponic system and slurry system at 25°C, respectively; however, the corresponding inhibition rates of root were significantly decreased to 25.5 and 3.5% with addition of RS400. This is mainly attributed to the reduction of Cd migration into the roots by RS400, which decreased Cd bioavailability. The mechanism behind the reduced Cd bioavailability is attributed to the Cd adsorption and the strong buffering capacity of acidity by RS400. Therefore, biochar could be a potential amendment for the remediation of Cd-contaminated soil even at increasing culturing temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.