Abstract

Bipolar resistive switching is observed in the GaIn/Cu:NiO film/ITO device with active layer deposited by sol-gel spin-coating. The first-principles calculations indicate that Cu dopants with valence of +1 are located at the substitutional Ni sites rather than the interstitial ones. Cu doping introduces more oxygen vacancies in the film and increases the carrier mobility, however, excessive Cu dopants may assemble at the grain boundary resulting in larger set voltage. Current–voltage measurements indicate that the trap charge limited and space charge limited conduction dominate the high resistance state, while the low resistance state follows the Ohmic mechanism. The switching is attributed to the formation/rupture of oxygen vacancy filaments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call