Abstract

The present work investigates the dominant mechanisms in the plasticity of nano-sized fcc metallic samples. Molecular dynamics simulations of nanopillar compression show that plasticity always starts with the nucleation of dislocations at the free surface, and the crystal orientation affects the subsequent microstructural evolution. The Schmid factor of leading and trailing partials plays a decisive role in leading to the twinning, or slip deformation. A significant difference is observed in the strength of pillars of the same size with different orientations. The power-law equation exponent is completely dependent on the crystal orientations, and a weak or no size effect is observed in the compression of [100]- and [110]-oriented nanopillars. The observed orientation based behaviour decreases by confining the free surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.