Abstract

The aim of this research is to develop a parametric investigation of the fabrication of poly(e-caprolactone) (PCL)/poly(glycolic acid) (PGA) scaffolds to decipher the influence of cryomilling time on the scaffolds’ resultant physical, morphological and mechanical characteristics. Scaffolds were fabricated via solid-state cryomilling to prepare a homogeneous blend along with conventional compression molding and porogen leaching yielding interconnected porous scaffolds. PCL/PGA scaffolds fabricated through this technique demonstrated high porosity at all cryomilling times. Morphological analysis revealed a co-continuous interconnected pore network. While mean pore size decreased, water uptake and compressive properties increased with increasing cryomilling times. Porous scaffolds cryomilled for 12min exhibited a mean pore size within the optimal range for tissue engineering and chondrocyte ingrowth. And the compressive modulus of scaffolds cryomilled for 12, 30 and 60min matched the compressive modulus of human articular cartilage. In addition, scaffolds exhibited water uptake, a key requirement in tissue engineering. A 60 day in vitro degradation study revealed mass loss starting from day 10 and increasing through day 60, while notable reduction in compressive properties was observed. The results indicated that cryomilling times affected the resultant properties of PCL/PGA scaffolds and will be interesting candidates for articular cartilage tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call